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ABSTRACT

This paper defines infinite horizon linear programs and
presents a procedure that will approximate the optimal solution
of almost any infinite horizon linear program that has a finite
optimal value. In addition, it is demonstrated that other
procedures for calculating optimal solutions will not, in
general, approximate the optimal solution.



APPROXIMATION OF OPTIMAL SOLUTIONS FOR INFINITE HORIZON LINEAR PROGRAMS
by

Richard C. Grinold

0. INTRODUCTION

This paper examines long range planning models that can be presented
as linear programs over an infinite planning horizon. The main results
characterize problems that have finite optimal values and establish procedures
for approximating optimal solutions by solving a T period linear program.
Three possible approaches to this task are examined and it is demonstrated
that only one procedure leads to solvable T period problems. The T
period problem is designed by decoupling the infinite problem into the sum
of a T period problem and another infinite problem that commences at time
T; call these problems 1 and 2, Any feasible solution of problem 1 produces
an input into problem 2, The scheme calculates an approximate galvage value
of the input from problem 1 to problem 2. This salvage value is then included
in the objective of problem 1. As T 1increases the error in calculating the
salvage value becomes less and less significant. The main conclusion of the
paper are easily stated: (1) the only defensible way to solve infinite horizon
linear programs is by the approximation technique outlined in section four;
(2) duality is not the primary consideration in the study of infinite horizon
linear programs; (3) the calculation of an equilibrium optimal policy, if one
in fact exists, does not, in general, assist in the solution of a discounted
criterion problem.

The remainder of this section introduces the problem, summarizes results,
relates this work to others, and describes the notational conventions used

in the paper.



Time is discrete t = 0,1,2, ..., . At any time t the state of the

system is 8 . Decisions x, are constrained by the relations Axt =g,

x, 20 . If decision x, is taken, then a reward with time zero value

atpxt is received and the state at time t + 1 1is b + th . A and K

are m x n matrices, p an n vector, b an m vector, s an m vector
and o a positive scalar less than 1.

If the initial (time zero) state is s then the infinite sequence of

decisions {xt} is constrained by

v
o

AX =8 , X
o (]
(1)

Axt = b + th-l = xt >

v
o
[}
[ A%
[

Let X(s) be the set of {xt} that satisfy (1). For any {xt} define

T
(2) p({x. }) = lim inf ) utpxt :
T+eo 0

The optimization problem under consideration is

Maximize p({xt})

(3)
subject to {xt} € X(s) .

Let e be a vector of ones, a summation vector. A sequence {xt}

is called a-convergent 1f the series of increasing nonnegative terms
§ t

o ex
0

¢ converges to a finite limit.

Denote X(s) as the set of a-convergent {xt} e X(s) , and note that

P({xt}) - g atpxt for {xt} e X(s) .



Section orie presents assumptions made in the paper and comments on their
immediate consequences and the problem of verification. These assumptions
hold throughout and are not restated for each result. Section two defines
the optimal value of problem (3) as a function of s . The consequences of
the assumptions not holding are investigated in sections two and three.
Section three contains an important result: if a program {xt} is feasible
but not a-convergent, then {xt} is a bad program in the sense that
p({xt}) .-,

Section four describes a sequence of solvable T period linear programs
that can be used to solve (2). The optimal solutions and optimal values of
the T period problems converge to an optimal solution and the optimal value
of the infinite problem. Section five presents sufficient optimality criterea
and comments on duality and the establishment of necessary conditions for
optimality. Section six ex«mines the question of calculating optimal equilibrium
policies; 1i.e., x, =x for all t . The appendix contains the statement and
proof of two lemmas that are used in the main body of the study.

This paper is based on rrevious work by Manne [13], Hopkins [11],[12],
Hopkins and Grinold {18), and Evers [3]. The work of Evers, [3] motivated
this study and is the genesis for the important assumption II in section 1.
Assumptions like II are implicitly made in [13] and [8], however, gyers was
the first to state and expleit fully this type of assumption. The assumptions
as stated in section 1 are satisfied by the class of problems cornsidered in [3]}.
In fact, in sections 2 and 3 it is demonstrated that the assumptions are nearly
the most general possible. Excep: for certain boundary cases, failure of
assumption )} or Il implies the optimal value of (3) is either + » or ==,
The theorem in section 2 generalizes a result, theorem 5.2, (3). Evers [3],

with more restrictive assumptions, is able to establish several attractive



results that characterize optimal solutions. However, since the main purpose
of this paper 1is to delineate the class of solvable problems and to construct
a viable solution procedure; the more restrictive assumptions of [3) are

not necessary to accomplish this objective.

The approximation procedure used in section four can be found in (2], and
in [6]-[8], and [10]-[13]. In [8] and [2], ti.: procedure solves the infinite
problem exactly when T = 0 , There are, however, no general convergence
results available prior to the theorem in section rour.

Work on optimality conditions can be found in [3],[5],[6],[11]-[13],[15].
The sufficiency result is identical in spirit to [12], and the remarks on
duality are consistent with [9]. In section six optimal equilibrium policies,
X, =X for all t , are discussed. This question has been studied in
(1],[4] and {10].

The following notational conventions are used in the paper. The symbol
> 0 means nonnegative; > semi-positive; and > strictly positive. The
vector e 1is used for summmations; each element of e equals one. Script S
is used as a subsequence of integers and S1 gSo means that Sl is a
refinement of So . Frequeni use is made of the Heine-Borel theorem; every
sequence in a closed bounded set of R" has a limit point in that set.

Equations are numbered within each section.



1. ASSUMPTIONS

This section presents and explores the assumptions used in all the

following sections. The assumptions are

I: There exists an a-convergent solution {xt} e X(s) .
II: For every X , 0 <A < a , there exists a solution (u,v) of the

equations
(1) u(A-XMK)=v+p, v>0.

III: One of the following holds.

(1) uA=v+p,v>0 has a solution
(11) For some 0 <1 <a, (u,v) solve (1) and either
UA>p or uA>0.,
(111) For some 0 < ) Sa, (u,v) solves (1) and qut >0

or (v + AK)xt >0 for all {xt} € X(s) .

We shall see in section 3, that if II and III hold and I does not then
either the problem is infeasible or each feasible solution {xt} has
p({xt}) = - o , A gimilar, not quite as strong, converse statement is true.
Suppose I is true and for some 0 < A < a , there does not exist a solution

(u,v) of
u(A-XK)=p+v, v2>20.

In this case, as is demonstrated in section 2, the problem is unbounded for
almost any value of s .

Both I and II cannot be verified in general. However, it is possible to
gain some information about the assumptions. For example, if I is satisfied,
then there exists a sclution x of the system

~b

(2) (A-aK)x =8 + 1-a

d x:O.



To see this, multiply the tth constraint of (1l:1) by ot » sum and note that

®
x=] a'x.  satisfies (2). If (2) is not feasible, then I fails. There is
0

no conclusive test to verify I. As in linear programming this is equivalent

t

to another infinite ho:rizon linear program.
Assumption II is difficult to verify. However, I1 and III (ii) will be

satisfied if there exists a solution of either
(3) u(A-ok) ~v=p,v>0,uA>p
or
(4) u(A-aK)-v-p,v>0,uA:0.
For (3) note that
A- )K= (1-%)A+£—(A-a!() .
Thus for all 0 < A < a , we have

u(A-AK):%v'&p.

For (4) note that

(%)u(A-AK)zu(A-aK) =v+op.

General verification of II requires that there does not exist a solution

of the generalized eigenvalue problem

with x,y >0 , and 0 < X < a .



Assumption III is a patchwork of special cases to cover the apparent
loophole in II (A = 0). Note that III (i) will be satisfied if II holds
for all X ,0< X < a, or, more directly, 1if either Ax = 0 , x > 0
has no solution or Ax =0, x >0 implies px <0, or Ax=0, x>0,
px > 0 implies Kx = O . Assumptioa III is only necessary if Ax =0,
x>0,px 20, Kx $ 0 has a solution. Items (1ii) and (iii) are directed
to this particular case. It is a reasonable conjecture that assumption III
is not necessary. At present, theorem 1, section 3, cannot be proved without
III, and it has not been possible to construct a counter example based on
the failure of III. The details in III (i{i{) and (iii) are included to cover
all the cases used in Evers [3], and, more significantly, to indicate the
failure of a possible solution procedure: see example 3 in section 4. In
particular, III (11i) covers the "primal directed" case (3] in which A = (B,I),
K= (H,0) and p = (q,0) . Each row of B 1is either nonnegative, or the
corresponding row of H and element of b are nonnegative. This assures
Axt >0 for all t and {xt} € X(s) . Moreover, u(A - aK) =v +p

implies u > 0 ; therefore III (iii) is satisfied.



2. THE OPTIMAL VALUE FUNCTION

Define V(s) to be the optimal value of the optimization problem as a

function of the initial state s .
(1) V(s) = sup{p({xt}) | {xt} e X(8)}

Let F= (s | X(s) # ¢} , be the set initially feasible states. If s ¢ F , then
V(s) 1s defined to be - = , This section demonstrates that V 1s convex and
satisfies a dynamic programming functional equation. The seétion closes by
examining the consequence of assumption II not holding.

Let domV = (s | V(s) > -=}, Both F and dom V are convex; and

dom VCF . Let ?"_C_F be the set of s such that I holds. FCdom VC F .

Proposition 1:

V(s) 1is concave.

Proof:

Following Rockafellar, [14], p. 25, note that V 1is concave if and only

if all A,yl,yz,sl,sz satisfying

0<Ac<1, V(sl) > Yl ’ V(sz) > Y2
imply that

v((l - A)s1 + Asz) > (1 - )‘)y1 + Ayz .

Select {xt} € X(si) for { = 1,2, such that yi < p({x:}) < V(si) . Note
that {(1 - A)x: + Axi} ¢ X((1 - A)sl + Aaz) and that

2

Ve - 08t +ae?) 2 pl = Nx] +

}2

(1= Dplxg} + 20 > (1= Dyl 4 a2,



In addition, V satisfies a dynamic programming functional equation.

Proposition 2:

On the convex set F , V satisfies the functional equation,

(2) V(s) = sup{px + aV(b + Kx)}

Ax-n,x;O.

Proof:

If scF,and Ax=s8 , x>0, then V(.):px+aV(b+Kx) . The
contrary conclusion would violate (1). However, for any ¢ > O , it is possible

to find {xt} € X(s) such that
V() 2 p({x.}) = px_ +ap({x,,,}) 3 V(s) - ¢ .

Since {xnl} e X(b + Kxo) , av(b + Kxo) > ap({xeﬂ}) . Therefore

V(s) > px  + av(db + Kxo) >V(s) - ¢,

f.e., V(s) solves (2). ||

This next proposition examines the implications of a failure in assumption
II. Failure of II implies for some 0 <A <a , u(A-2K) =v+p,v>0
has no solution. To rule out & horder line case, total failure here will

mean u(A-XK)=v+p, v > 0 has no solution.

Proposition 3:

If I holds and, for some A , 0 < A S$a, the system
u(A - XK) 2P

has no solution, then V(s) = + ®» for s in the relative interior of dom V ,



10

and V(s) = -« for s ¢ domV . V can only be finite on the relative

boundary of dom V .

Proof :

If u(A -)K) > p has no solution, then Farkas Lemma implies (A - A\K)y = 0,
y20, py -0 has a solution,

Suppose s ¢ F and {xt} ¢ X(s) . Then {xt + y/xt} e X(s + Ky/)\),
and |:t({xt + y/At}) = +o , This implies V(s) is an improper concave
function and according to Rockafellar, (14], Theorem 7.2, V can only be

finite on the relative boundary of its domain. ||

The following example illustrates the result.

Exesmple 1:
SIS
p = (1,-1) b-(g)
o~ (sne)
° \%02
V(s) = - 1f s }0

otherwise

V(s) = lim inf T(BOI - 802) .

T > o

dom V
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1f I fails, then theorem 1 of the next section indicates that V(s) » - = ,
Either X(s) = ¢ , or there are no a-convergent solutions in X(s) .

Theorem 1 states that (xt} not a-convergnet implies p({xt}) --w,
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3. _THE CLASS OF OPTIMAL SOLUTIONS

The section demonstrates that, without loss of generality, problem (1:3)

is equivalent to
(1) Max Zatpxt
0
subject to {xt} e X(s) .

Solutions that are not a-convergent are not potentially optimal solutions.

Theorem 1:

1f {xt} ¢ X(s) 1s not a-convergent, then p({xt}) = - w,

Proof:

Let ) be the smallest number such that {xt} is vy convergent for

all 0 <y <X: ) {is the radius of conmvergence of the power series

Z ytext . The proof firsi siiows that assumption II implies that any solution
0
wvith radius of convergence i , 0 < X < a has p({xt}) = - » , The remainder
of the proof, and assumption III, are needed to deal with {xt} that have
a radius of convergence equal to zero.

Let ) be the radius of convergence for the power series 2 Ytext =

0
Assume first that 0 <A <a . If X > a, then {xt} is u-convergent. If
the tth constraint of (1l:1) is multiplied by A and the first T
constraints are summed the result is:
T T

(2) -0 I, =8+ ]2% - )«T+1th .
0 1
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T
Let "’l‘ - (Z) Atcxt » and divide (2) by "’l‘ + Consider lemma 1 in the appendix

with a_ = xtcx . From lemma 1, there exists a sequence So » such that

t t

T
T t
ay/M, = A\'ex,/M; >0 . Thus on a finer subsequence S, CS |, (Z) Ax My x 20

and
(A-XK)x=0,x>0.
From IT, there exist (u,v) such that
u(A-XK) =p+v,v>0,
It follows that

px+vx=0,vx>0, px<0,

T
2 Atpx
o ° Tt
-+ px , thus limianApxt--w. From lemma 2 in

MT T»>> 0

the appendix, with p = % , it follows that p({xt}) -,

For T ¢ S1 .

Now consider the case where the radius of convergence of } ytext is
0
equal to zero. For any XA > 0 , (2) will have a solution. If (2) is divider

T
by M’l‘ = (X) Atext ,» then there exist a subsequence S1 and vectors x(1) ,

y(2) such that

3) - +y(x) 20 TeS
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(A = AK)x(A) = =AKy())
ex(1) = 1,
x(2) 2 y(h) .

, let A = 1/k , x¥ = x(1/k) , yk

Q jr=

For k > = y(1/k) . There exists a

subsequence S , and points x and y such that

xk » x >0 ke$S

(4) yk +y2>0 keS

Ax = 0 .
From assumption III part (i), there exists (u,v) such that
BVA=v+p,v>0,.
It follows that vx >0 , px < 0 , and for k sufficiently large
Kk T

px <0, For i =1/k, MT = Z Atext » there exists a subsequence S
0

such that

] A%px,

-»pxk<0,

T
It follows that 1lim inf Z Atpxt = - » . and from lemma 2, that
T+= 0

pix,}) = - = .

It remains to consider III (ii{) and III (1i{). From (2) either

T ¢ T-1 t T ¢ T
(5) us + J Aub = § ATwx, 4+ ] ATpx_ 4+ 2 (u + AuK)x
1 0 t ) t T
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or
T+l T T
t t t T+1
(6) us + ; A ub g v, + g A pX, + 2 quT+1 .

1f either II1 (i11) or (1ii) holds, then either (v + AuK)xT >0 or

quT 20 . Thus either
T T-1 T
us + X A%ub > Z Atvxt + Z Atpxt
1 0 0
or
T+1 T T
us + Z A%ub > Z Atvxt + 2 Atpxt .
1 0 0
In both cases the left hand quantity is convergent. If {xt} is
Tt Tt
not a-convergent, then E A vx, + 4+ = | therefore 2 A pX, > ==, and by
0 0

lemma 2, p({xt}) - -,

Corollary:

If I fails then V(s) = - = ,

Proof:

If X(s) = ¢ , then V(s) = - » , Otherwise every {xt} € X(s) 1s not

a-convergent, by theorem 1 p({xt}) = «o  thus V(g) = - =,

From (4) in the proof of theorem 1 one can conclude several things.
First, if Ax = 0 , x > 0 has no solution, then each {xt} e X(s) 1is
A-convergent for some ) > 0 . Second, if Ax =0 , x > 0 i{mplies px <0,

then II1 (1) is satisfled, and the arguments following (4) apply.
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Third, 1f Ax =0, x>0, px > 0 implies Kx = 0 , then II does not hold
since (A-aK)x=0,x2>0, px >0 has a solution. The cases III (ii)
and (111) are only needed 1f Ax =0 , x>0 , px >0 and Kx 40,

has a solution.
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4. FINITE HORIZON APPROXIMATIONS

This section considers a finite (T period) horizon approximation
program and demonstrates that the optimal solutions of the T period

problems converge to the optimal solution of the infinite horizon problem.

The T period problem is

:--.:T>0

subject to Ax 0 2

(1)

T T

T
Axt-b+I<xt_1,xt:0

T b T T
(A - GK)XT 1-0 + KlT-l H x.r : 0 .

Define VT(s) as the optimal value of (1).

Proposition 4:

Problem (1) has an optimal solution for all T , and

W v > vl > ve) .

v

(11) vi(s)

max[px + aVT(b + Kx)]

Ax-s.x;O.

Proof:

The dual of (1) is



18

T=1
Minimize u‘gl + ) ulb + ufb/1-a
1 ¢ T

T t T
(2) subject to uA > a'p+ Uirl

K for O:t:'r-l
ug(A-aK)zan

Let, by II, (u,v) satisfy u(A-aK) -vep, v>0., Then u': - atu

is feasible for (2). Also, suppose that {xt} e X(s) , then

x, t<T
xT- @
¢ Z a'x W= T
t
t=T

is feasible for (1). Since (1) and (2) have feasible solutions, they have

optimal solutions.

Suppose uT solves the T period approximation, then

t

u t<T

[ 4 -
u'I+l_
. T

au,r t=T+ 1

is feasible for the T + 1 period dual, with value

T-1

Te + ) ulb + uTbll-a = VT(s) .
1 t T

© 0

T
T T T
0® + g utb + au,rbll-u = u

Therefore VT+1(s) < VT(s) .
For any {xt} e X(s) , a feasible solution of (1), using (3), can be

constructed. Thus from Theorem 1, VT(s) > V(s) .

Item (ii) follows directly from the definition of VT(s) 1
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Theorem 2:

For each T , let (x:} be the optimal solution of (1), where

T
xt-O,t>‘l‘.

(1) There exists an optimal solution {xt} of the infinite horizon

problem.

(ii) For every Tt , there exists a sequence ST such that

T
X, * X, for O:t:r,'l‘cST.

(1i1) VT(s) = 2 utpxr +V(s) = Z atpxt c
0 0

Proof:

Let M, = ) atexT and note that
o t

= t. T ab
(5) (A-al()(oaxt)-s+m.

i
2
|
|

Suppose M’l‘ » + ® on some subsequence S , then there exists a subsequence

-

Sl C S, and a vector 2z such that

T otT

gaxt/&r*z TeSl
(6)

(A-aK)z2=0,2z>0.

Since :I is valid, there exists (u,v) such that u(A-aK) sp+v ,v>0.
Thus, O = pz + vz , vz> 0 ; supz <0 . For ’l‘eSl,VT(s)-H.rpz.rgv(s) > = @,
However, H.[. > 4 o PZy * PZ - 0 . Thus contradiction indicates that

M-limsupM.r<+°°.
T
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For each ¢t , cx': < l‘l/ut . x: 2 0 . Thus there exists a sequence So .
and vector x such that x: * X for Te¢ So . In general there exist

a sequence St c S‘l’-l and vector x  such that

o
It follows that {x } ¢ X(s) and ) atex <M. To verify this last claim

0 t
note that for each T and 1,
S ot.T T t.T
Zaex <H-Zaex <M.
ts= t s
0 ™+l

T
The limit over T ¢ ST » ylelds Z utext <M. Thus {xt} € X(s) ; and
0

Z atpr = VT(s) > V(s) > ): atpx .
t - = t
0 0
In the limit
Tt T Tt
limZapxt-e+Lapxt, €>0.
T+ 0 0

If ¢ =0 , the proof is completed. Suppose in contrast € > 0 . Then for

each T
Zutp(xr-x)>e>0.
0 t t" =

Let u,v solve u(A-aK) =p+v,v>0. PFrom (5)

(6) us+—_;-



Since {xt} e X(s) ,

[ J [ J
aub t . . t
) tu<l-1_a-(z)avxt (Z)apxt.

Subtract (7) from (6) to obtain

t ,.T Tt T
Eap(xt-x)-gav(xt-xt)=e>0

0 t
or, for any Tt .
L T T ot T ot T
(8) Zav(xt-xt)+20wt:e+zavx‘r:e>0.
o T+l ™+l

However, the left hand side of (8) can be made arbitrarily small.

choose 1 large enough so that

[ ]
0< ] ofwx
T+1

¢ S €3

* *
Then there exists a T such that for all T ¢ ST » T2 T
L T
| T a'vix, -x) | <e/3. |]
0 t t —

Corollary 2:
For s ¢ F
V(s) = max[px + aV(b + Kx)])

Ax =8 , x>0,

First

21
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One tempting variant on the approximation scheme described here is to

terminate the T period problem by requiring that X, = Xp for t>T.

The example below shows this is not generally applicable since I and II

may be satisfied yet (A - K)x =b , x >0 may not have a solution.

Example 2: A= 1, K=1.6,b=1,p=1,8=1, a=}%

_ et -

xt 0.6 L 2.222 soe 9 yet

is feasible and | atxt
0

(A-Kx=1, x>0 has no solution.

Another possible way to approximate the infinite problem is to simply

truncate the decision process at time T by solving

T
Max X atpr
0 t

T
subject to Axo-s ,xo>0
T T T
Ax =b+Kx ,,x 20
1<t<T.

However, our next example shows that problems of this sort may be

unbounded for all T .

Example 3:

- o

Py e
] al= &

oo
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Note that I, and II are satisfied. In addition, III (1ii) is satisfied
since for every {xt} Ax, = b+ Kx _, >0 . Inaddition, u(A-ok) =v+p,
v > 0 has a solution with u > 0 .,

To see the problem is unbounded, note that any positive multiple of the
vector yl = (0,1,0,1) can be added to xi . Thus arbitrarily large profits

are posgirle at time T .
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3._OPTIMALITY CONDITIONS; DUALITY

This section briefly consider optimality conditions, establishes
sufficient conditions for optimality and comments on necessary conditions

and duality.

Theorem 3:

1f {xt} ¢ X(s) and there exists {ut} such that

@ lu, Il 5 a
t
(11) utA-vt-ap+ut+ll(,vt:0

(111) v ® 0

then {xt} is optimal.

Proof:

From (ii) and (iii)

Juax -Ju_ Ke =7 u(b+Kx) -] uKx
ott 1t+1t ot t ltt

@ Ot
us+{ub-Zapx
o lt 0 t

If {?c’t} is another feasible solution not in ?('(s) , then p({'i't}) " -o,
o
If {'th ¢ X(s) , then from (1) g utA'i't < @ ;3 thus

o @ -] @
g utpxt =us+ g ub = (Z) vt;t + (z) atp?c't > (2) a':p?('t < |



It is possible to define a dual infinite horizon program.

T
minimize lim sup u s + ) ub
T-o ©° 1°F
(1)
t
subject to utA -V, map+ ut+1K » Ve 2 0.

Proposition 4:

The maximum primal infinite horizon problem has a value greater than or

equal to the optimal value of the minimization problem.

Proof :

Consider the dual linear programs, (4:2). The optimal solution {uI}
determines a feasible solution of (1) with u: - at-Tu$ for t > T . That
solution has value VT(s) . Thus the infimum inr (1) is less than or equal
to V(s) . ||

Suppose for p > 1, W(A-pK) >0 , U <0 has a solution. Then if

u(A - ak) > p, {atu + ptﬁ? solves (1), and 1lim sup(u + U)s +
T+
T

z (atu + ptﬂ)b = -« o, Thus to insure (1) has a finite lower bound, ome
gust at least require (A - oK)x=b , x > 0 has a solution for all o >1.
This is too stringent on assumption.

If one requires that dual solutions satisfy || u, Il < oM for some
M , then the infimum of (1) is equal to the maximum of the original problem.
Recall the definition of ug in section 4 and the construction of the
optimal solution ({x } . Let M = szp ot || uz || « 1f a subsequence S
exists such that MT SM for Te S, then it is possible to establish the

existence of {ut} , such that

25
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W o [Ju |l gn

t
(11) utA-vt-ap+ut+1K,vt:0

(111) VX, " 0

(iv) There erists St such that u': *u, for T € S_r » 0 st et

This fact is easy to establish. However, it is of little use unless conditions

which bound HT can be deduced from the data A,K,p,b,a .
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6, EQUILIBRIUM SOLUTIONS

In [1], [4) and [10], the problem of finding an equilibrium optimal
solution X, =X for all t was considered and solved in a most elegant
wvay. This section points out that knowledge of an equilibrium optimal
solution is not particularly helpful in solving problem (1:3).

Suppose the system
1) (A-Kx=b ,x>0

has a feasible solution. Then, if x , satisfies (1), {xt = x} ¢ X(b + Kx)

and V(b + Kx) > 11’-’_‘—“ + Now consider, the optimization problem

Max px

(2)
subject to (A-K)x=b ,x>0.

Suppose first that (2) has unbounded solution; f.e., py >0, (A-K)y =0,

y 2 0 has a solution. Then for any s ¢ F

V(s + uKy) > V(s) + T‘:‘: PY »

since {xt + uy) € X(s + uKy) for all {xt} € X(s) . In this case the function
*

V 1is unbounded. If (2) has an optimal solution, x* , then V(b + l(x*) 2 iL’_‘a- .

Now suppose an equilibrium optimal solution X exists; i.e.,

(A-K)X=b,X>0,Vb+KY) = PX_ | 1t follows that either X solves

= 1-a
(2) or
# px' | pX_
(3) V(b+Kx)=1.a>1_a-v(b+m

% "
Thus the suboptimal solution s = b + Kx , and x, =X for all t {s

preferable to the optimal solution s = b + KX , x, = ¥ for all ¢t .

crog ]
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More general equilibrium policies can be discovered by allowing a T
period cycle; i.e., s =b + Kx,r + Solve with s as a variable
L t
Max Z a px
t
0
subject to -Is + Axo =0, xo 2 0

Ax_ = b + Kx >0 1<t<T

t-1 ' *¢ a

If HT is the optimal value of (4), and 8yX s ooes Xy is the optimal

solution, then

W $ o,
V(s);-l—.-(l,l.—+1:V(b+Kx)zl_u.

Since b + Kx* » X, = x* is feasible for (1).

Thus if optimal equilibrium solutions can be calculated then "better"
suboptimal solutions can be calculated using (2) and (4). These calculations,
however, are not directly useful in the solution of the original optimization
problem. The more direct procedure outlined in section 4 yields approximately

optimal value and an approximately optimal first period decision that is

consistent with the initial state s .



7. _APPENDIX

This appendix contains two lemmas used in the proof of theorem 1.

Lemma 1:

1f
(1) a 20 all ¢
(1) Jafa <+e 1f 02 <
0

T
(111) lm ] a =+
0 t

ar
then 1lim inf = =0 ,
T +» i a
0 t
Proof:

*
If the result is false, there exists an 1 > ¢ > 0 , and T such that

%
for all T >T

T
(1) a.r:egat.

Q13

= = *
Let bo a, and bt ITH: . Therefore

b for all T .

[ B

-
Q)

(a4

(2) br

or

c\ T2 T=1
(3) sz-I:E-)th-u (Z)bt.

29



It can be established by induction that
0) bpzu(+w b for T3 1.

(3) demonstrates that (4) is true for T =1, To check T+ 1 note

that

T T -
b.r+1;ugbt;u1+({)u(1+u) b,

T
o g,

o

T
u(l + u) bo .

This indicates that

1
where A T4 <1.

However
*
T +T *

T
I, fa =T 1%
T +1 1

which implies X Atat diverges. ||
0
Lemma 2:

T T
If Uninf Ja =-« and p: 1, then lminf ] p'a =-=.
T »o 0 T»o (



3

Proof:
L t
Trivial 1f o= 1 . Laet r.r-zp.t.md u=1l/p <1, Then,
0
T T
(5) ) a, ~(1-w I utrt + uT+1r.r .
0 0
If lim inf Tp > = » , then Ty must be bounded below, 1i.e., Ir > M
T+
for all T . Thus from (5)
T T
Ta>la-wivt+u™|uan
o ¢~ 0

which contradicts the hypotheses. ||
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